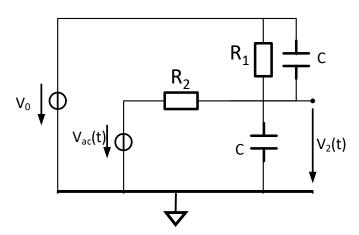
Laboratoire d'électronique

Section science de la vie Cycle Bachelor SV 3ère année

Noms:	
-------	--

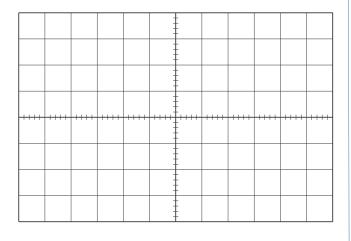

Date:

3ème séance : Circuits RC et Diodes

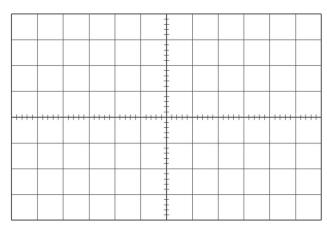
A. OBJECTIFS

- Régime harmonique suite.
- La diode et ses applications (limiteur, redressement et Filtrage ...)

1. Circuit RC, suite



Avec:


$$\begin{split} &V_0 = 4 \ V, \\ &R_1 = 22 \ k\Omega, \ R_2 = 10 \ k\Omega \\ &C = 10 \ nF \\ &V_{ac}(t) = 8 \ sin \left(\ 2\pi \ f. \ t \ \right) \end{split}$$

a- Réaliser le circuit et mesurer la réponse du circuit pour f = 1 kHz et 2.3 kHz, représenter dans les deux cas le signal $V_2(t)$ à la sortie et donner à chaque fois sa formule littérale expérimentale.

$$pour f = f_0 = 1KHz$$

$$pour f = f_0 = 2.3KHz$$

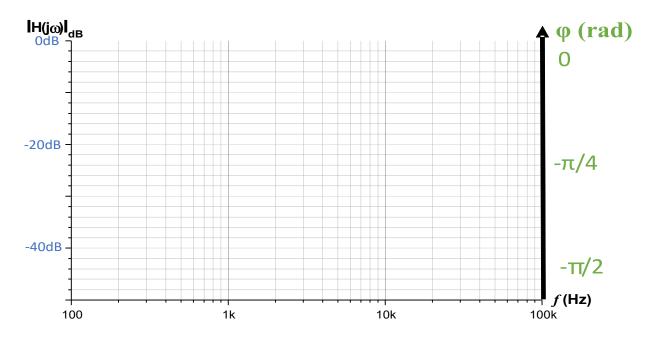
$$V_2(t) =$$

$$V_2(t) =$$

b- En utilisant la superposition donner la formule littérale du signal $V_2(t)$ et ainsi que la valeur théorique de toutes ses composantes à f=1 et $2.3\ kHz$. Formule littérale

$$V_2(t) =$$

$$pour f = f_0 = 1KHz V_2(t) =$$


$$pour f = f_0 = 2.3KHz V_2(t) =$$

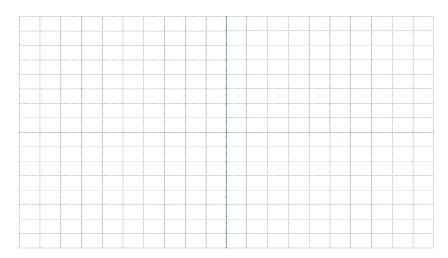
c- Annuler la composante continue ($V_0 = 0$) et déterminer la fonction de transfert $H(j\omega)$. Calculer la valeur de la fréquence de coupure f_c du circuit et indiquer sa nature (pôle ou zéro).

$$H(i\omega) =$$

Fréquence de coupure
$$f_c = kHz$$
; Nature :

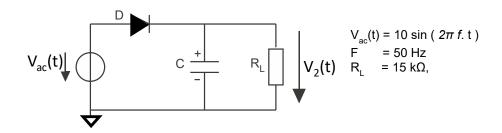
d- Tracer le diagramme de Bode asymptotique en amplitude et en phase de $H(j\omega)$ sur graph ci-dessous.

- e- Mesurer la réponse fréquentielle (**amplitude et phase**) et reporter les valeurs sur le graphe ci-dessus (3 à 4 points par décade).
- f- Mesurer la fréquence de coupure en expliquant brièvement votre démarche.

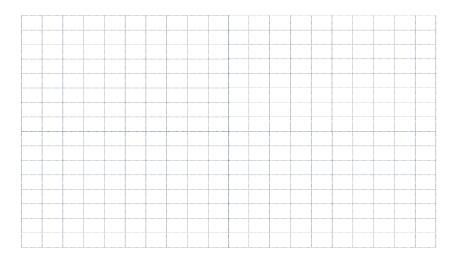

Fréquence de coupure expérimentale fc =	KHz;

2. La diode

Remplacer la résistance R et C par une diode de la façon suivante:



a- Reporter les mesures des tensions $V_1(t)$ et $V_2(t)$ en indiquant l'axe du temps du graphe par un "ON" les zones où la diode D_1 conduit.



b-	Donner l'expression théorique de $[V_2(t)]_{max}$ et dire dequel circuit s'agit-il ?													
		D												
• • • • • •		D												
c- Enlever la capacité et commenter l'effet sur les résultats.														
		D												
• • • • • •		D												

3. Redressement-filtrage

- a- Déterminer les valeurs de C permises pour que l'ondulation $\frac{\Delta V_2}{\widehat{V_{ac}}}$ soit inférieure ou égale à 15 %. Choisir une valeur normalisée remplissant cette condition et calculer l'ondulation pour cette valeur.
- b- Prévoir l'allure de la tension de sortie avec et sans la capacité et représenter dans les deux cas V₂ (t) ainsi que V_{ac}(t) (théorique).

C-	ŀ	≺e	ali	se	rı	e ı	mo	on [.]	ta	ge	. ۱	/le	est	ıre	er	et	re	еp	or	te	r١	/ad	c(t) ∈	et	ex	р	liq	ue	er	es	S E	•V6	en	itu	eı	les	S C	۱۱۷	er	ge	eno	се	Si	av	ec) I	es	рі	e۱	/IS	10	ns	•	
• • • •																																																							
• • • •																																																							
	• • •	• • •	• •	• •	• •	• •	• •	• •	• •	• •	• •	• •						• •	• •	• •	• •			•	• •	• •	• •		• •	• •	• •		•		• •	• •	• •	• •	• •														• • •		